Warming and cooling influences of North American boreal fires

crossref(2024)

引用 0|浏览4
暂无评分
摘要
The Arctic-boreal region is warming rapidly, with consequences for northern ecosystems and global climate. Fires across the Arctic-boreal region are a major natural disturbance mechanism that initiate climate warming (positive) and cooling (negative) feedbacks. Understanding the net forcing effect from boreal fire on climate is crucial in managing and mitigating climate change impacts of boreal fires. Here we report radiative forcing estimates from boreal forest fires across Alaska and Western Canada (Arctic Boreal Vulnerability Experiment-domain). Our results integrate the effect of greenhouse gas emissions (warming) and aerosols emission (net cooling) have through direct combustion, post-fire vegetation recovery sequestering carbon (cooling), fire-induced permafrost degradation emitting CO2 and CH4 (warming), and changes in surface albedo (cooling). Alaskan fires are on average climate warming (1.34±2.95 W/m2 per burned area) – uncertainty given as spatial standard deviation, while Canadian fires show on average a climate cooling (‑2.26±2.48 W/m2 per burned area) effect. The emissions from the combustion of organic soils and post-fire permafrost thaw dominate the positive feedback for Alaskan fires, whereas the cooling effect of post-fire changes in surface albedo because of prolonged spring snow cover dominate for the western Canadian fires. Our work demonstrates large-scale spatial variability in the climate feedbacks from North American boreal forest fires. Such fine-scale spatial information on the warming and cooling influences of forest fires could be useful in designing forest management and fire suppression activities informed by climate impacts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要