The movement and deformation of the Jiangcuo fault before the 2021 MS7.4 Maduo earthquake reflected by GPS and InSAR data

crossref(2024)

Cited 0|Views3
No score
Abstract
The 2021 Maduo MS7.4 earthquake occurred in the Jiangcuo fault with left-lateral strike-slip movement. In order to study the movement and deformation characteristics of the Jiangcuo fault before the Maduo earthquake and further analyze the seismogenesis process of the continental strong earthquake, the large-scale strain rate field distribution in western China, the locking degree and the evolution of slip deficit rate of the Jiangcuo fault, and the rupture mechanism of seismogenic fault are analyzed and discussed in this paper using the GPS velocity field on a long time scale and InSAR dynamic velocity field. The results show that: (1) The strain rate field in EW direction shows that the Maduo earthquake is located at the edge of the EW direction strong compression zone of Bayanhar block. The eastern part of the Maduo earthquake is a compression strain accumulation zone, and the western part is a gradual transition from weak compression to tension strain. The results of the maximum shear strain rate field show that the Maduo earthquake is located at the edge and high gradient zone of the high value area of the maximum shear strain rate field. (2) The inversion results of the locking degree show that deep unlocking occurs in some regions in the east and west of the epicenter of the fault during 2015-2021, gradually transitioned to a completely locked state in the middle of the fault, and the focal point of Maduo earthquake is at the edge of the completely locked region in the transition region. The dynamic results from 2015 to 2017 and 2017 to 2019 were basically stable. The whole fracture plane was basically in a state of strong locking, and only partial unlocking with a depth below 15km existed in local areas. From 2019 to 2021, some faults in the east and west of the epicenter have deep and shallow unlocking phenomena, including the overall unlocking of most areas of the western section and the local deep unlocking of the East section of the ruptured fault, while the rapid unlocking of the two sides of the epicenter may contribute to the occurrence of the main earthquake. This work was supported by Science for earthquake resilience (XH23047A).
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined