A genetic algorithm for the Resource-Constrained Project Scheduling Problem with Alternative Subgraphs using a boolean satisfiability solver

European Journal of Operational Research(2024)

引用 0|浏览4
暂无评分
摘要
This study evaluates a new solution approach for the Resource-Constrained Project Scheduling with Alternative Subgraphs (RCPSP-AS) in case that complex relations (i.e. nested and linked alternatives) are considered. In the RCPSP-AS, the project activity structure is extended with alternative activity sequences. This implies that only a subset of all activities should be scheduled, which corresponds with a set of activities in the project network that model an alternative execution mode for a work package. Since only the selected activities should be scheduled, the RCPSP-AS comes down to a traditional RCPSP problem when the selection subproblem is solved. It is known that the RCPSP and, hence, its extension to the RCPSP-AS is NP-hard. Since similar scheduling and selection subproblems have already been successfully solved by satisfiability (SAT) solvers in the existing literature, we aim to test the performance of a GA-SAT approach that is derived from the literature and adjusted to be able to deal with the problem-specific constraints of the RCPSP-AS. Computational results on small- and large-scale instances (both artificial and empirical) show that the algorithm can compete with existing metaheuristic algorithms from the literature. Also, the performance is compared with an exact mathematical solver and learning behaviour is observed and analysed. This research again validates the broad applicability of SAT solvers as well as the need to search for better and more suited algorithms for the RCPSP-AS and its extensions.
更多
查看译文
关键词
Project scheduling,Alternative subgraphs,Genetic algorithm,Satisfiability solver
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要