谷歌浏览器插件
订阅小程序
在清言上使用

A Honeycomb-Inspired Carboxymethyl Chitosan-Covalently Link NH2-black Phosphorene Biobased Cellulose Green Nanocomposites with Tremendously Enhancement Fire Safety and Thermal Conductivity

Composites science and technology(2024)

引用 0|浏览7
暂无评分
摘要
Biobased carboxymethyl chitosan-modified black phosphorene (BP-CMC) was prepared through an amidation reaction between amino group functionalized black phosphorene (NH2-BP) and CMC. Density functional theory (DTF) express that the adsorption energy between urea and phosphene is −6.28 eV, indicating a strong interaction. The resulting BP-CMC was further applied to reinforce the mechanical, flame-retardant and thermal conductivity performance of honeycomb cellulose nanofiber (CNF) film via vacuum filtration. Cone calorimetry test (CCT) result exhibits that the introduction of 30 wt% BP-CMC significantly promoted the fire safety of CNF. For instance, a 98.41% reduction in smoke production rate (SPR), 92.00 % decline in CO release and a 61.31% decrease in heat release rate (HRR) were observed compared to neat CNF. Furthermore, Thermogravimetric infrared (TG-IR) indicates a significant decrease in the release of flammable gases. Raman spectra verify that the incorporation of 30 wt% BP-CMC improves the graphitization degree of residual chars, thus limiting the transfer of heat and oxygen. The improvement in fire safety is attributed to the formation of an intumescent flame-retardant system, which is rich in carbon source (CMC), acid source (BP) and gas source (amino). Simultaneously, the introduction of 30 wt% BP-CMC into CNF leads to considerable enhancement in thermal conductivity (up to 17.49 %), thermal diffusion (utmost to 43.45 %) and heat capacity (increased by 19.23 %). Moreover, the 30 wt % addition of BP-CMC into CNF possesses excellent mechanical properties with the improvement of toughness (increased by 143.50 %) and tensile strength (increased by 140.90 %). This strategy not only provides a new strategy for functionalizing BP but also upgrades the application potential of BP nanosheets in the fire safety of polymer composite films.
更多
查看译文
关键词
Black phosphorene,Carboxymethyl chitosan,Composite film,Cellulose,Flame retardancy,Thermal conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要