谷歌浏览器插件
订阅小程序
在清言上使用

Usefulness of Pituitary High-Resolution 3D MRI with Deep-Learning-based Reconstruction for Perioperative Evaluation of Pituitary Adenomas

Neuroradiology(2024)

引用 0|浏览3
暂无评分
摘要
Purpose To evaluate the diagnostic value of T1-weighted 3D fast spin-echo sequence (CUBE) with deep learning-based reconstruction (DLR) for depiction of pituitary adenoma and parasellar regions on contrast-enhanced MRI. Methods We evaluated 24 patients with pituitary adenoma or residual tumor using CUBE with and without DLR, 1-mm slice thickness 2D T1WI (1-mm 2D T1WI) with DLR, and 3D spoiled gradient echo sequence (SPGR) as contrast-enhanced MRI. Depiction scores of pituitary adenoma and parasellar regions were assigned by two neuroradiologists, and contrast-to-noise ratio (CNR) was calculated. Results CUBE with DLR showed significantly higher scores for depicting pituitary adenoma or residual tumor compared to CUBE without DLR, 1-mm 2D T1WI with DLR, and SPGR ( p < 0.01). The depiction score for delineation of the boundary between adenoma and the cavernous sinus was higher for CUBE with DLR than for 1-mm 2D T1WI with DLR ( p = 0.01), but the difference was not significant when compared to SPGR ( p = 0.20). CUBE with DLR had better interobserver agreement for evaluating adenomas than 1-mm 2D T1WI with DLR (Kappa values, 0.75 vs. 0.41). The CNR of the adenoma to the brain parenchyma increased to a ratio of 3.6 (obtained by dividing 13.7, CNR of CUBE with DLR, by 3.8, that without DLR, p < 0.01). CUBE with DLR had a significantly higher CNR than SPGR, but not 1-mm 2D T1WI with DLR. Conclusion On the contrast-enhanced MRI, compared to CUBE without DLR, 1-mm 2D T1WI with DLR and SPGR, CUBE with DLR improves the depiction of pituitary adenoma and parasellar regions.
更多
查看译文
关键词
Pituitary adenoma,Magnetic resonance imaging,Three-dimensional,Fast spin echo sequence,Deep-learning-based reconstruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要