Levodopa Impairs the Energy Metabolism of the Basal Ganglia In Vivo.

Jannik Prasuhn, Tanja Schiefen, Theresia Güber, Julia Henkel, Jan Uter,Julia Steinhardt,Britta Wilms,Norbert Brüggemann

Annals of neurology(2024)

引用 0|浏览8
暂无评分
摘要
OBJECTIVE:One proposed mechanism of disease progression in Parkinson's disease includes the interplay of endogenous dopamine toxicity and mitochondrial dysfunction. However, the in-vivo effects of exogenous dopamine administration on cerebral bioenergetics are unknown. METHODS:We performed a double-blinded, cross-over, placebo-controlled trial. Participants received either 200/50 mg levodopa/benserazide or a placebo and vice versa on the second study visit. Clinical assessments and multimodal neuroimaging were performed, including 31phosphorus magnetic resonance spectroscopy of the basal ganglia and the midbrain. RESULTS:In total, 20 (6 female) patients with Parkinson's disease and 22 sex- and age-matched healthy controls (10 female) were enrolled. Treatment with levodopa/benserazide but not with placebo resulted in a substantial reduction of high-energy phosphorus-containing metabolites in the basal ganglia (patients with Parkinson's disease: -40%; healthy controls: -39%) but not in the midbrain. There were no differences in high-energy phosphorus-containing metabolites for patients with Parkinson's disease compared to healthy controls in the OFF state and treatment response. INTERPRETATION:Exogenously administered levodopa/benserazide strongly interferes with basal ganglia high-energy phosphorus-containing metabolite levels in both groups. The lack of effects on midbrain levels suggests that the observed changes are limited to the site of dopamine action. ANN NEUROL 2024;95:849-857.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要