Chrome Extension
WeChat Mini Program
Use on ChatGLM

Representation-Aware Experimentation: Group Inequality Analysis for A/B Testing and Alerting

arXiv (Cornell University)(2022)

Cited 3|Views24
Abstract
As companies adopt increasingly experimentation-driven cultures, it is crucial to develop methods for understanding any potential unintended consequences of those experiments. We might have specific questions about those consequences (did a change increase or decrease gender representation equality among content creators?); we might also wonder whether if we have not yet considered the right question (that is, we don't know what we don't know). Hence we address the problem of unintended consequences in experimentation from two perspectives: namely, pre-specified vs. data-driven selection, of dimensions of interest. For a specified dimension, we introduce a statistic to measure deviation from equal representation (DER statistic), give its asymptotic distribution, and evaluate finite-sample performance. We explain how to use this statistic to search across large-scale experimentation systems to alert us to any extreme unintended consequences on group representation. We complement this methodology by discussing a search for heterogeneous treatment effects along a set of dimensions with causal trees, modified slightly for practicalities in our ecosystem, and used here as a way to dive deeper into experiments flagged by the DER statistic alerts. We introduce a method for simulating data that closely mimics observed data at LinkedIn, and evaluate the performance of DER statistics in simulations. Last, we give a case study from LinkedIn, and show how these methodologies empowered us to discover surprising and important insights about group representation. Code for replication is available in an appendix.
More
Translated text
Key words
testing,group inequality analysis,alerting,representation-aware
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2019

被引用16 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest