谷歌浏览器插件
订阅小程序
在清言上使用

Multicomponent System for Development of Antimicrobial PLA-based Films with Enhanced Physical Characteristics.

International journal of biological macromolecules(2024)

引用 0|浏览3
暂无评分
摘要
This study aims to develop polylactic acid (PLA)-based packaging films with imparted antimicrobial properties and enhanced physical characteristics by evaluating the likely interaction among multiple film components. For this purpose; epoxidized soybean oil (ES) (20 %) serves as a plasticizer, spruce resin (SR) (15 %) functions as both a plasticizer and antimicrobial agent, ZnO (0.1 %) acts as a nanofiller and antimicrobial, and finally thyme and clove essential oil mixture (5 % and 10 %) serves as an antimicrobial agent were incorporated to PLA film formulation. Composite materials were prepared by the solvent casting method using methylene chloride as the solvent. The developed films were characterized in terms of physical, mechanical, thermal, and antimicrobial properties. Tensile strength (59 MPa) and elastic modulus (2625 MPa) of the neat PLA film gradually decreased to 8.99 MPa and 725.4 MPa, respectively, with the sequential addition of all components, indicating enhanced flexibility. SR, ZnO, and EOs significantly imparted antimicrobial property to the PLA film as demonstrated by the inhibition zone of 13.83 mm and 15.67 mm observed for E. coli and S. aureus, respectively. The barrier properties of the films were enhanced by the addition of SR and ZnO; however, EOs increased the water vapor permeability from 0.080 to 0.090 g.mm/m2.day.kPa compared to the neat PLA film. Principal component and hierarchical cluster analysis enabled the successful discrimination of the films, demonstrating how the film properties are affected by the film components. Therefore, this study suggests that selection of a proper combination is essential to highly benefit from the multicomponent film systems for designing alternative food packaging materials with desired properties.
更多
查看译文
关键词
Polylactic acid,Composite film,Packaging film,Spruce resin,ZnO nanoparticles,Biopolymer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要