谷歌浏览器插件
订阅小程序
在清言上使用

Molecular Interactions of Acids and Salts with Polyampholytes.

Journal of chemical physics online/˜The œJournal of chemical physics/Journal of chemical physics(2024)

引用 0|浏览1
暂无评分
摘要
The Hofmeister series characterizes the ability of salt anions to precipitate polyampholytes/proteins. However, the variation of protein size in the bulk solution of acids and the effect of salts on the same have not been studied well. In this article, the four acids (CH3COOH, HNO3, H2SO4, and HCl) and their effects on the hydrodynamic radius (R-H) of gelatin in the bulk solution are investigated. The effects of Na salt with the same anions are also considered to draw a comparison between the interactions of acids and salts with polyampholytes. It is suggested that the interactions of polyampholytes with acids are different from those of salts. The interaction series of polyampholytes with acids with respect to the R-H of the polyampholyte is CH3COO- > NO3- > Cl- > SO42- whereas the interaction series with salts is SO42- > CH3COO- > Cl- > NO3-. These different interactions are due to equilibration between acid dissociation and protonation of polyampholytes. Another important factor contributing to the interactions in weak acids is the fact that undissociated acid hinders the movement of dissociated acid. Experiments and simulations were performed to understand these interactions, and the results were identical in terms of the trend in R-H (from the experiments) and the radius of gyration (Rg) (from the simulations). It is concluded that the valence of ions and dissociation affect the interaction in the case of acids. However, the interactions are influenced by the kosmotropic and chaotropic effect, hydration, and mobility in the case of salts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要