谷歌浏览器插件
订阅小程序
在清言上使用

The Effects of Oxidative Stress on the Development of Atherosclerosis

Biological chemistry(2019)

引用 108|浏览0
暂无评分
摘要
Atherosclerosis is a cardiovascular disease (CVD) known widely world wide. Several hypothesizes are suggested to be involved in the narrowing of arteries during process of atherogenesis. The oxidative modification hypothesis is related to oxidative and anti-oxidative imbalance and is the most investigated. The aim of this study was to review the role of oxidative stress in atherosclerosis. Furthermore, it describes the roles of oxidative/anti-oxidative enzymes and compounds in the macromolecular and lipoprotein modifications and in triggering inflammatory events. The reactive oxygen (ROS) and reactive nitrogen species (RNS) are the most important endogenous sources produced by non-enzymatic and enzymatic [myeloperoxidase (MPO), nicotinamide adenine dinucleotide phosphate (NADH) oxidase and lipoxygenase (LO)] reactions that may be balanced with anti-oxidative compounds [glutathione (GSH), polyphenols and vitamins] and enzymes [glutathione peroxidase (Gpx), peroxiredoxins (Prdx), superoxide dismutase (SOD) and paraoxonase (PON)]. However, the oxidative and anti-oxidative imbalance causes the involvement of cellular proliferation and migration signaling pathways and macrophage polarization leads to the formation of atherogenic plaques. On the other hand, the immune occurrences and the changes in extra cellular matrix remodeling can develop atherosclerosis process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要