Monospecific Mangrove Reforestation Changes Relationship Between Benthic Mollusc Diversity and Biomass: Implication for Coastal Wetland Management
JOURNAL OF ENVIRONMENTAL MANAGEMENT(2024)
Beijing Normal Univ | Xiamen Univ | Chinese Acad Sci
Abstract
Anthropogenic causes are overtaking natural factors to reshape patterns of biodiversity and ecosystem functioning. Mangrove reforestation aimed at reversing losses of mangroves has been conducted worldwide for several decades. However, how reforestation influences the link between ecological processes that shape community diversity and the consequent effects on ecosystem functions such as biomass production is less well known. Here we used data collected before and after mangrove planting to examine the effects of reforestation on molluscan species richness and biomass production by testing the changes in species richness, compositional similarities, distance-decay effects (community similarity decreases with increasing geographical distance) in metacommunity across a regional scale of 480 km (23-27 N-degrees) in southeast Chinese coasts. Additionally, we further detected the impact of landscape configuration caused by different intensities of reforestation on the mollusc community. After the mangrove reforestation, mollusc species richness and biomass increased significantly. The increases in species richness and biomass of mollusc community were mediated by reducing distancedecay effect, indicating an increase in relationship strength between species richness and biomass might be associated with a decrease in distance-decay effect with rising mangrove habitat. We highlight the importance of considering the effects of anthropogenic changes on the relationship between biodiversity and ecosystem functioning. Quantifying the distance-decay effect of these influences enables management decisions about coastal restoration to be based upon ecological mechanisms rather than wishful thinking or superficial appearance.
MoreTranslated text
Key words
Spatial arrangements,Biodiversity,Mangrove reforestation,Distance-decay,Benthic molluscs,Anthropogenic changes
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2003
被引用85 | 浏览
2007
被引用771 | 浏览
2014
被引用152 | 浏览
2016
被引用487 | 浏览
2018
被引用30 | 浏览
2016
被引用156 | 浏览
2018
被引用26 | 浏览
2019
被引用24 | 浏览
2019
被引用51 | 浏览
2020
被引用71 | 浏览
2015
被引用672 | 浏览
2021
被引用10 | 浏览
2022
被引用32 | 浏览
2022
被引用8 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper