谷歌浏览器插件
订阅小程序
在清言上使用

Effect of Bidispersity on Polymer-Bound Layers of Carbon Black Primary Particles: Combining Large-Scale Simulations and Experiments

MACROMOLECULES(2023)

引用 0|浏览0
暂无评分
摘要
In this work, we propose a combined computational and experimental study to investigate the effect of bidispersity of polyethylene (PE) chains on the interface and interphase between the polymer and carbon black (CB) filler particles. To reach this goal, we have implemented a molecular description based on hybrid particle-field modeling approach that allows to perform large-scale simulations of CB primary particles of realistic size (20 nm) embedded in bidisperse PE melts of high molecular weight and simulated as large-scale models up to about two million coarse-grained units (beads). Due to the molecular detail of the proposed models, we are able to provide an accurate representation of the local structure of PE chains adsorbed on different surface sites of CB primary particles. Experiments performed with the Borealis technology Borstar to synthesize bimodal PE, together with simulations of bidisperse PE melts, provide a possible molecular mechanism involving short PE chains able to explain the improved dispersion of CB in bimodal polymer melts. The achieved insights can help in the design of new and optimized ternary mixtures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要