Deep Learning-Based Analysis of COVID-19 X-ray Images: Incorporating Clinical Significance and Assessing Misinterpretation
Digital health(2023)
Daffodil International University | Charles Darwin University | University of Calgary | United International University
Abstract
COVID-19, pneumonia, and tuberculosis have had a significant effect on recent global health. Since 2019, COVID-19 has been a major factor underlying the increase in respiratory-related terminal illness. Early-stage interpretation and identification of these diseases from X-ray images is essential to aid medical specialists in diagnosis. In this study, (COV-X-net19) a convolutional neural network model is developed and customized with a soft attention mechanism to classify lung diseases into four classes: normal, COVID-19, pneumonia, and tuberculosis using chest X-ray images. Image preprocessing is carried out by adjusting optimal parameters to preprocess the images before undertaking training of the classification models. Moreover, the proposed model is optimized by experimenting with different architectural structures and hyperparameters to further boost performance. The performance of the proposed model is compared with eight state-of-the-art transfer learning models for a comparative evaluation. Results suggest that the COV-X-net19 outperforms other models with a testing accuracy of 95.19%, precision of 96.49% and F1-score of 95.13%. Another novel approach of this study is to find out the probable reason behind image misclassification by analyzing the handcrafted imaging features with statistical evaluation. A statistical analysis known as analysis of variance test is performed, to identify at which point the model can identify a class accurately, and at which point the model cannot identify the class. The potential features responsible for the misclassification are also found. Moreover, Random Forest Feature importance technique and Minimum Redundancy Maximum Relevance technique are also explored. The methods and findings of this study can benefit in the clinical perspective in early detection and enable a better understanding of the cause of misclassification.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined