Ice Crystal Complexity and Link to the Cirrus Cloud Radiative Effect

Emma Järvinen, Bastiaan van Diedenhoven, Nathan Magee, Steven Neshyba, Martin Schnaiter, Guanglang Xu,Olivier Jourdan,David Delene,Fritz Waitz, Simone Lolli,Seiji Kato

Clouds and Their Climatic Impacts Geophysical Monograph Series(2023)

引用 0|浏览0
暂无评分
摘要
Chapter 3 Ice Crystal Complexity and Link to the Cirrus Cloud Radiative Effect Emma Järvinen, Emma Järvinen Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorBastiaan van Diedenhoven, Bastiaan van Diedenhoven Center for Climate System Research, Columbia University, New York, NY, USASearch for more papers by this authorNathan Magee, Nathan Magee Department of Physics, The College of New Jersey, Ewing, NJ, USASearch for more papers by this authorSteven Neshyba, Steven Neshyba Department of Chemistry, University of Puget Sound, Tacoma, WA, USASearch for more papers by this authorMartin Schnaiter, Martin Schnaiter Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorGuanglang Xu, Guanglang Xu Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorOlivier Jourdan, Olivier Jourdan Laboratoire de Météorologie Physique, Université Clermont Auvergne/OPGC/CNRS, Clermont-Ferrand, FranceSearch for more papers by this authorDavid Delene, David Delene Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USASearch for more papers by this authorFritz Waitz, Fritz Waitz Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorSimone Lolli, Simone Lolli Institute of Methodologies for Environmental Analysis, National Research Council of Italy, Tito, Italy CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, SpainSearch for more papers by this authorSeiji Kato, Seiji Kato NASA Langley Research Center, Hampton, VA, USA now at SRON Netherlands Institute for Space Research, Leiden, NetherlandsSearch for more papers by this author Emma Järvinen, Emma Järvinen Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorBastiaan van Diedenhoven, Bastiaan van Diedenhoven Center for Climate System Research, Columbia University, New York, NY, USASearch for more papers by this authorNathan Magee, Nathan Magee Department of Physics, The College of New Jersey, Ewing, NJ, USASearch for more papers by this authorSteven Neshyba, Steven Neshyba Department of Chemistry, University of Puget Sound, Tacoma, WA, USASearch for more papers by this authorMartin Schnaiter, Martin Schnaiter Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorGuanglang Xu, Guanglang Xu Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorOlivier Jourdan, Olivier Jourdan Laboratoire de Météorologie Physique, Université Clermont Auvergne/OPGC/CNRS, Clermont-Ferrand, FranceSearch for more papers by this authorDavid Delene, David Delene Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND, USASearch for more papers by this authorFritz Waitz, Fritz Waitz Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, GermanySearch for more papers by this authorSimone Lolli, Simone Lolli Institute of Methodologies for Environmental Analysis, National Research Council of Italy, Tito, Italy CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, SpainSearch for more papers by this authorSeiji Kato, Seiji Kato NASA Langley Research Center, Hampton, VA, USA now at SRON Netherlands Institute for Space Research, Leiden, NetherlandsSearch for more papers by this author Book Editor(s):Sylvia C. Sullivan, Sylvia C. SullivanSearch for more papers by this authorCorinna Hoose, Corinna HooseSearch for more papers by this author First published: 15 December 2023 https://doi.org/10.1002/9781119700357.ch3Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The aim of this chapter is to present emerging information on ice crystal morphology in the nano- and microscale from various sources, and explore its impact on ice crystal's single-scattering properties and ultimately on cirrus cloud radiative effect. Increasing amount of observations in the last decade have shown that cirrus ice crystals invariably contain some degree of facet roughness, hollowness, or other morphological complexities that make the crystal shape deviate from that of a pristine hexagonal shape. These morphological complexities are found to be present in a wide variety of environmental conditions. A set of physical and statistical complexity parameters is used to quantify ice crystal complexity depending on the application. Although laboratory studies have shown that complexity parameters tend to increase with increasing crystal growth rate, observations in natural cirrus indicate that complexity parameters only weakly vary at cirrus temperatures below 230 K. Morphological complexities affect the optical properties of ice crystals. Implementing the optical properties of complex ice crystals in climate models has shown that the radiative effect of crystal complexity is a cooling of 1–2 Wm −2 globally. Due to the prevalence of ice crystal morphological complexities and their influence on cirrus radiative properties, the radiative effect of crystal complexity should be taken into account in future climate models. However, work is still needed to transfer the increasing knowledge of the physical nature of ice crystal complexity into optical particle models and eventually into parameterizations used in models. References Abdelmonem , A. , Järvinen , E. , Duft , D. , Hirst , E. , Vogt , S. , Leisner , T. , & Schnaiter , M. ( 2016 ). PHIPS–HALO: The airborne particle habit imaging and polar scattering probe – Part 1: Design and operation' . Atmospheric Measurement Techniques , 9 ( 7 ), 3131 – 3144 . 10.5194/amt-9-3131-2016 Web of Science®Google Scholar Avila , E. E. , Castellano , N. E. , Saunders , C. P. R. , Bürgesser , R. E. , & Aguirre Varela , G. G. ( 2009 ). Initial stages of the riming process on ice crystals . Geophysical Research Letters , 36 ( 9 ). 10.1029/2009GL037723 Google Scholar Bacon , N. J. , & Swanson , B. D. ( 2000 ). Laboratory measurements of light scattering by single levitated ice crystals . Journal of the Atmospheric Sciences , 57 ( 13 ), 2094 – 2104 . 10.1175/1520-0469(2000)057<2094:LMOLSB>2.0.CO;2 Web of Science®Google Scholar Bailey , M. , & Hallett , J. ( 2002 ). Nucleation effects on the habit of vapour grown ice crystals from- 18 to- 42° C . Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography , 128 ( 583 ), 1461 – 1483 . Google Scholar Bailey , M. , & Hallett , J. ( 2004 ). Growth rates and habits of ice crystals between- 20 and- C . Journal of the Atmospheric Sciences , 61 ( 5 ), 514 – 544 . 10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2 Web of Science®Google Scholar Bailey , M. P. , & Hallett , J. ( 2009 ). A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory. AIRS II, and other field studies . Journal of the Atmospheric Sciences , 66 ( 9 ), 2888 – 2899. 10.1175/2009JAS2883.1 Web of Science®Google Scholar Baran , A. J. ( 2009 ). A review of the light scattering properties of cirrus . Journal of Quantitative Spectroscopy and Radiative Transfer , 110 ( 14 ), 1239 – 1260 . XI Conference on Electromagnetic and Light Scattering by Non-Spherical Particles: 2008. 10.1016/j.jqsrt.2009.02.026 Web of Science®Google Scholar Baran , A. J. ( 2012 ). From the single-scattering properties of ice crystals to climate prediction: A way forward . Atmospheric Research , 112 , 45 – 69 . 10.1016/j.atmosres.2012.04.010 Web of Science®Google Scholar Barkey , B. , Paulson , S. , & Liou , K.-N. ( 2012 ). Polar nephelometers for light scattering by ice crystals and aerosols: Design and measurements . In Light scattering reviews (Vol. 6, pp. 3 – 37 ). Springer . Google Scholar Baum , B. A. , Yang , P. , Heymsfield , A. J. , Schmitt , C. G. , Xie , Y. , Bansemer , A. , et al. ( 2011 ). Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds . Journal of Applied Meteorology and Climatology , 50 ( 5 ), 1037 – 1056 . 10.1175/2010JAMC2608.1 Web of Science®Google Scholar Bi , L. , & Yang , P. ( 2017 ). Improved ice particle optical property simulations in the ultraviolet to far-infrared regime . Journal of Quantitative Spectroscopy and Radiative Transfer , 189 , 228 – 237 . 10.1016/j.jqsrt.2016.12.007 Web of Science®Google Scholar Bi , L. , Yang , P. , Kattawar , G. W. , & Mishchenko , M. I. ( 2013 ). Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles . Journal of Quantitative Spectroscopy and Radiative Transfer , 116 , 169 – 183 . 10.1016/j.jqsrt.2012.11.014 Web of Science®Google Scholar Bi , L. , Yang , P. , Liu , C. , Yi , B. , Baum , B. , Van Diedenhoven , B. , & Iwabuchi , H. ( 2014 ). Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds . Journal of Quantitative Spectroscopy and Radiative Transfer , 146 , 158 – 174 . 10.1016/j.jqsrt.2014.03.017 Web of Science®Google Scholar Borovoi , A. , Konoshonkin , A. , & Kustova , N. ( 2014 ). Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds . Optics Letters , 39 ( 19 ), 5788 . 10.1364/OL.39.005788 PubMedWeb of Science®Google Scholar Borovoi , A. , Kustova , N. , & Konoshonkin , A. ( 2015 ). Interference phenomena at backscattering by ice crystals of cirrus clouds . Optics Express , 23 ( 19 ), 24557 . 10.1364/OE.23.024557 PubMedWeb of Science®Google Scholar Boucher , O. , Randall , D. , Artaxo , P. , Bretherton , C. , Feingold , G. , Forster , P. , et al. ( 2013 ). Clouds and aerosols . In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 571 – 657 ). Cambridge University Press . 10.1007/s40641-015-0010-x Google Scholar Butterfield , N. , Rowe , P. M. , Stewart , E. , Roesel , D. , & Neshyba , S. P. ( 2017 ). Quantitative three-dimensional ice roughness from scanning electron microscopy . Journal of Geophysical Research (Atmospheres) , 122 ( 5 ), 3023 – 3041 . 10.1002/2016JD026094 Web of Science®Google Scholar Campbell , J. , Lolli , S. , Lewis , J. , Gu , Y. , & Welton , E. ( 2016 ). Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences . Journal of Applied Meteorology and Climatology , 55 ( 8 ), 1667 – 1679 . 10.1175/JAMC-D-15-0217.1 PubMedWeb of Science®Google Scholar Campbell , J. R. , Dolinar , E. K. , Lolli , S. , Fochesatto , G. J. , Gu , Y. , Lewis , J. R. , et al. ( 2021 ). Cirrus cloud top-of-the-atmosphere net daytime forcing in the Alaskan Subarctic from ground-based MPLNET monitoring . Journal of Applied Meteorology and Climatology , 60 ( 1 ), 51 – 63 . 10.1175/JAMC-D-20-0077.1 Web of Science®Google Scholar Chauvigné , A. , Jourdan , O. , Schwarzenboeck , A. , Gourbeyre , C. , Gayet , J. F. , Voigt , C. , et al. ( 2018 ). Statistical analysis of contrail to cirrus evolution during the contrail and cirrus experiment (concert) . Atmospheric Chemistry and Physics , 18 ( 13 ), 9803 – 9822 . 10.5194/acp-18-9803-2018 Web of Science®Google Scholar Chepfer , H. , Goloub , P. , Riedi , J. , De Haan , J. , Hovenier , J. , & Flamant , P. (
更多
查看译文
关键词
Ice Nucleation,Emission Modeling,Atmospheric Composition,Aerosol Formation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要