Phosphonium-Substituted Conjugated Polyelectrolytes Display Efficient Visible-Light-Induced Antibacterial Activity.
ACS applied materials & interfaces(2024)
Abstract
We report the light-activated antibacterial activity of a new class of phosphonium (R-PMe3+)-substituted conjugated polyelectrolytes (CPEs). These polyelectrolytes feature a poly(phenylene ethynylene) (PPE) conjugated backbone substituted with side groups with the structure -O-(CH2)nPMe3+, where n = 3 or 6. The length of the side groups has an effect on the hydrophobic character of the CPEs and their propensity to interact with bacterial membranes. In a separate study, these phosphonium-substituted PPE CPEs were demonstrated to photosensitize singlet oxygen (1O2) and reactive oxygen species, a key factor for the photoinduced inactivation of bacteria. In this study, in vitro antibacterial assays against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were performed by employing the series of polyelectrolytes under both dark and illumination conditions. In general, the phosphonium-substituted CPEs displayed profound light-activated biocidal activity, with >99% colony forming unit (CFU) reduction after 15 min of light exposure (16 mW cm-2) at a ≤20 μM CPE concentration. Strong biocidal activity was also observed in the dark for a CPE concentration of 20 μM against S. aureus; however, higher concentrations (200 μM) were needed to enable dark inactivation of E. coli. The dark activity is ascribed to bacterial membrane disruption by the CPEs, supported by a correlation of dark biocidal activity with the chain length of the side groups. The light-activated biocidal activity is associated with the ability of the CPEs to sensitize ROS, which is cytotoxic to the microorganisms. Serial dilution bacterial plating experiments revealed that the series of CPEs was able to induce a >5-log kill versus E. coli with 15 min of exposure to a blue LED source (16 mW cm-2).
MoreTranslated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined