Aspect-ratio effect on the wake of a wall-mounted square cylinder immersed in a turbulent boundary layer

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
The wake topology developing behind a wall-mounted square cylinder in a turbulent boundary layer has been investigated using a high-resolution large-eddy simulation (LES). The boundary-layer thickness at the obstacle location is fixed, the Reynolds number based on the cylinder h and the incoming free-stream velocity u_∞ is 10,000 while the aspect ratio (AR), defined as obstacle height divided by its width, ranges from 1 to 4. The Reynolds stresses, anisotropy-invariant maps (AIM) and the turbulent kinetic energy (TKE) budget are analyzed to investigate the influence of AR on the wake structures and on the turbulence production and transport. In particular, the transition from a dipole configuration for low AR to a quadrupole wake is extensively discussed and examined. The necessity of more data to express this critical AR as a function of the momentum-thickness-based Reynolds number Re_θ is thus highlighted. As an effect of the AR, the wake is deformed in both streamwise and spanwise directions. This contraction of the wake, attributed to the occurrence of the base vortices for the cases AR = 3 and 4, impacts the size of the positive production region that stretches from the roof and the flank of the obstacle to the wake core. The AIMs confirm the wake three-dimensionality and are used to describe the redistribution of the turbulent kinetic energy (TKE) along the three normal directions, in agreement with the literature [A. J. Simonsen and P. Krogstad, Phys. Fluids 17, 088103, (2005)]. The present analysis on the TKE budget displays a stronger turbulence production for the cases AR = 3 and 4, demonstrating the strong influence of the tip and base vortices in generating turbulence at the wall location behind the cylinder.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要