Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration

Nature Nanotechnology(2024)

引用 0|浏览4
暂无评分
摘要
Electronic retinal prostheses for stimulating retinal neurons are promising for vision restoration. However, the rigid electrodes of conventional retinal implants can inflict damage on the soft retina tissue. They also have limited selectivity due to their poor proximity to target cells in the degenerative retina. Here we present a soft artificial retina (thickness, 10 μm) where flexible ultrathin photosensitive transistors are integrated with three-dimensional stimulation electrodes of eutectic gallium–indium alloy. Platinum nanoclusters locally coated only on the tip of these three-dimensional liquid-metal electrodes show advantages in reducing the impedance of the stimulation electrodes. These microelectrodes can enhance the proximity to the target retinal ganglion cells and provide effective charge injections (72.84 mC cm −2 ) to elicit neural responses in the retina. Their low Young’s modulus (234 kPa), owing to their liquid form, can minimize damage to the retina. Furthermore, we used an unsupervised machine learning approach to effectively identify the evoked spikes to grade neural activities within the retinal ganglion cells. Results from in vivo experiments on a retinal degeneration mouse model reveal that the spatiotemporal distribution of neural responses on their retina can be mapped under selective localized illumination areas of light, suggesting the restoration of their vision.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要