谷歌浏览器插件
订阅小程序
在清言上使用

The effect of enhanced structure in the posterior segment of clear aligners during anterior retraction: a three-dimensional finite element and experimental model analysis

Xiaohan Jin, Xue Tian, Victoria Lee Zhi Hui,Yikan Zheng,Jinlin Song,Xianglong Han

Progress in Orthodontics(2024)

引用 0|浏览7
暂无评分
摘要
Background Mesial tipping of posterior teeth occurs frequently during space closure with clear aligners (CAs). In this study, we proposed a new modification of CA by localized thickening of the aligner to form the enhanced structure and investigate its biomechanical effect during anterior retraction. Methods Two methods were employed in this study. First, a finite element (FE) model was constructed, which included alveolar bone, the first premolars extracted maxillary dentition, periodontal ligaments (PDL), attachments and aligners. The second method involved an experimental model—a measuring device using multi-axis transducers and vacuum thermoforming aligners. Two groups were formed: (1) The control group used common CAs and (2) the enhanced structure group used partially thickened CAs. Results FE model revealed that the enhanced structure improved the biomechanics during anterior retraction. Specifically, the second premolar, which had a smaller PDL area, experienced a smaller protraction force and moment, making it less likely to tip mesially. In the same vein, the molars could resist movement due to their larger PDL area even though they were applied larger forces. The resultant force of the posterior tooth was closer to the center of resistance, reducing the tipping moment. The canine was applied a larger retraction force and moment, resulting in sufficient retraction of anterior teeth. The experimental model demonstrated a similar trend in force variation as the FE model. Conclusions Enhanced structure allowed force distribution more in accordance with optimal principles of biomechanics during the extraction space closure while permitting less mesial tipping and anchorage loss of posterior teeth and better retraction of anterior teeth. Thus, enhanced structure alleviated the roller coaster effect associated with extraction cases and offered a new possibility for anchorage reinforcement in clear aligner therapy.
更多
查看译文
关键词
Clear aligner,Extraction case,Anterior retraction,Finite element analysis,Anchorage reinforcement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要