Molten salt synthesis of MXene-derived hierarchical titanate for effective strontium removal

Journal of Hazardous Materials(2024)

引用 0|浏览5
暂无评分
摘要
The removal and recovery of radioactive Sr(II) from wastewater and seawater has been of great concern due to the negative environmental impacts of nuclear energy development and the potential risk of nuclear accidents. Herein, a facile molten salt synthesis strategy was developed to systematically investigated the reaction of different types of MXenes with nitrates. Among the products, K+ intercalated hierarchical titanate nanostructures (K-HTNs) obtained from the direct chemical transformation of multilayered Ti3C2Tx exhibited unique layered structures, good physicochemical properties, and outstanding adsorption performance for Sr(II). The maximum adsorption capacity of Sr(II) by K-HTNs reached 204mg·g−1 at ambient temperature, and the good regeneration and reusability of the titanate was also demonstrated. K-HTNs showed preferential selectivity for Sr(II) in different environmental media containing competing ions, and the removal efficiency of Sr(II) in real seawater was as high as 93.3%. The removal mechanism was elaborated to be the exchange of Sr2+ with K+/H+ in the interlayers of K-HTNs, and the adsorbed Sr(II) had a strong interaction with Ti−O− termination on the titanate surface. Benefiting from the merits of rapid and scalable synthesis and excellent adsorption performance, MXene-derived K-HTNs have broad application prospects for the purification of 90Sr-contaminated wastewater and seawater.
更多
查看译文
关键词
MXene,potassium titanate nanostructures,molten salt method,90Sr(II) adsorption,seawater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要