Exosomal Microrna Following Severe Trauma: Role in Bone Marrow Dysfunction.
JOURNAL OF TRAUMA AND ACUTE CARE SURGERY(2024)
Abstract
INTRODUCTION Severe trauma disrupts bone marrow function and is associated with persistent anemia and altered hematopoiesis. Previously, plasma-derived exosomes isolated after trauma have been shown to suppress in vitro bone marrow function. However, the cargo contained in these vesicles has not been examined. We hypothesized that trauma plasma-derived exosomes exhibit microRNA (miRNA) changes that impact bone marrow function after severe injury. METHODS Plasma was collected from a prospective cohort study of trauma patients (n = 15; 7 males, 8 females) with hip and/or femur fractures and an Injury Severity Score of >= 15; elective total hip arthroplasty (THA) patients (n = 8; 4 males, 4 females) served as operative controls. Exosomes were isolated from plasma with the Invitrogen Total Exosome Isolation Kit (Thermo Fisher Scientific, Waltham, MA), and RNA was isolated using a miRNeasy Mini Kit (Qiagen, Hilden, Germany). Direct quantification of miRNA was performed by NanoString Technologies on a human miRNA gene panel and analyzed with nSolver with significance defined as p < 0.05. RESULTS There were no differences in age or sex distribution between trauma and THA groups; the average Injury Severity Score was 23. Trauma plasma-derived exosomes had 60 miRNA identities that were significantly downregulated and 3 miRNAs that were upregulated when compared with THA (p < 0.05). Twelve of the downregulated miRNAs have a direct role in hematopoiesis regulation. Furthermore, male trauma plasma-derived exosomes demonstrated downregulation of 150 miRNAs compared with male THA (p < 0.05). Female trauma plasma-derived exosomes demonstrated downregulation of only four miRNAs and upregulation of two miRNAs compared with female THA (p < 0.05). CONCLUSION We observed downregulation of 12 miRNAs linked to hematopoiesis along with sexual dimorphism in miRNA expression from plasma-derived exosomes following severe trauma. Understanding sexually dimorphic miRNA expression provides new insight into sex-based changes in postinjury systemic inflammation, immune system dysregulation, and bone marrow dysfunction and will aid us in more precise future potential therapeutic strategies.
MoreTranslated text
Key words
Exosomes,trauma,injury,microRNA
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined