Extracellular α-synuclein impairs sphingosine 1-phosphate receptor type 3 (S1PR3)-regulated lysosomal delivery of cathepsin D in HeLa cells.

Genes to cells : devoted to molecular & cellular mechanisms(2024)

引用 0|浏览0
暂无评分
摘要
α-Synuclein (α-Syn)-positive intracellular fibrillar protein deposits, known as Lewy bodies, are thought to be involved in the pathogenesis of Parkinson's disease (PD). Although recent lines of evidence suggested that extracellular α-Syn secreted from pathogenic neurons contributes to the propagation of PD pathology, the precise mechanism of action remains unclear. We have reported that extracellular α-Syn caused sphingosine 1-phosphate (S1P) receptor type 1 (S1PR1) uncoupled from Gi and inhibited downstream G-protein signaling in SH-SY5Y cells, although its patho/physiological role remains to be clarified. Here we show that extracellular α-Syn caused S1P receptor type 3 (S1PR3) uncoupled from G protein in HeLa cells. Further studies indicated that α-Syn treatment reduced cathepsin D activity while enhancing the secretion of immature pro-cathepsin D into cell culture medium, suggesting that lysosomal delivery of cathepsin D was disturbed. Actually, extracellular α-Syn attenuated the retrograde trafficking of insulin-like growth factor-II/mannose 6-phosphate (IGF-II/M6P) receptor, which is under the regulation of S1PR3. These findings shed light on the understanding of dissemination of the PD pathology, that is, the mechanism underlying how extracellular α-Syn secreted from pathogenic cells causes lysosomal dysfunction of the neighboring healthy cells, leading to propagation of the disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要