谷歌浏览器插件
订阅小程序
在清言上使用

Increase Metabolic Heat to Compensate for Low Temperature in Activated Sludge Systems

Zhi-Hua Li, Jia-Wei Yang,Hao Zhang

Water research(2024)

引用 0|浏览15
暂无评分
摘要
The efficient operation of activated sludge systems is frequently hindered by low temperatures, and extensive research has been conducted to overcome this difficulty. However, the effect of varying temperatures on heat generation during substrate degradation remains unclear. In this study, results from laboratory-scale reactors show that sludge generated 5.36 +/- 0.58 J/mg COD, 4.45 +/- 0.24 J/mg COD, and 4.22 +/- 0.26 J/mg COD at 10 degrees C, 20 degrees C, and 30 degrees C under aerobic conditions, respectively. Similarly, the sludge generated 4.05 +/- 0.31 J/mg COD, 2.37 +/- 0.15 J/mg COD, and 2.89 +/- 0.18 J/mg COD under anoxic conditions. Despite the decreased respiration rates and hence reduced pollutant removal efficiency, sludge exhibited effective heat generation at low temperatures. Results from the full-scale plant also show a negative correlation between the heat generation capacity of microorganisms and the temperatures. 14.2 degrees C is considered the critical wastewater temperature for microorganisms' heat generation to offset the investigated plant's heat dissipation. This observation verified that thermal compensation for low temperatures was also significant in the full-scale plant. The mechanism of low-temperature compensation is attributed to non-growth processes being less dependent on temperature than growth processes, resulting in slow microbial growth but high heat generation at low temperatures. These findings provide valuable insights into the design and sustainable operation of wastewater treatment plants.
更多
查看译文
关键词
Activated sludge,Heat pump,Metabolic heat,Thermal energy,Thermogenesis,Wastewater treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要