谷歌浏览器插件
订阅小程序
在清言上使用

Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: Pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis

International Journal of Pharmaceutics: X(2024)

引用 0|浏览18
暂无评分
摘要
Celecoxib (CLX), a selective inhibitor for cyclooxygenase 2 (COX-2), has manifested potential activity against diverse types of cancer. However, low bioavailability and cardiovascular side effects remain the major challenges that limit its exploitation. In this work, we developed ultra-elastic nanovesicles (UENVs) with pH-triggered surface charge reversal traits that could efficiently deliver CLX to colorectal segments for snowballed tumor targeting. CLX-UENVs were fabricated via a thin-film hydration approach. The impact of formulation factors (Span 80, Tween 80, and sonication time) on the nanovesicular features was evaluated using Box-Behnken design, and the optimal formulation was computed. The optimum formulation was positively coated with pol-yethyleneimine (CLX-PEI-UENVs) and then coated with Eudragit S100 (CLX-ES-PEI-UENVs). The activity of the optimized nano-cargo was explored in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. Levels of COX-2, Wnt-2 and beta-catenin were assessed in rats' colon. The diameter of the optimized CLX-ES-PEI-UENVs formulation was 253.62 nm, with a zeta potential of-23.24 mV, 85.64% entrapment, and 87.20% cumula-tive release (24 h). ES coating hindered the rapid release of CLX under acidic milieu (stomach and early small intestine) and showed extended release in the colon section. In colonic environments, the ES coating layer was removed due to high pH, and the charge on the nanovesicular corona was shifted from negative to positive. Besides, a pharmacokinetics study revealed that CLX-ES-PEI-UENVs had superior oral bioavailability by 2.13-fold compared with CLX suspension. Collectively, these findings implied that CLX-ES-PEI-UENVs could be a prom-ising colorectal-targeted nanoplatform for effective tumor management through up-regulation of the Wnt/ beta-catenin pathway.
更多
查看译文
关键词
Celecoxib,Colorectal cancer targeting,pH-triggered charge-reversal nanovesicles,Box-Behnken design,Pharmacokinetics,Wnt/beta-catenin pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要