谷歌浏览器插件
订阅小程序
在清言上使用

Transport-Limited Growth of Coccolith Crystals.

ADVANCED MATERIALS(2024)

引用 0|浏览9
暂无评分
摘要
Biogenic crystals present a variety of complex morphologies that form with exquisite fidelity. In the case of the intricate morphologies of coccoliths, calcite crystals produced by marine algae, only a single set of crystallographic facets is utilized. It is unclear which growth process can merge this simple crystallographic habit with the species-specific architectures. Here, a suite of state-of-the-art electron microscopies is used to follow both the growth trajectories of the crystals ex situ, and the cellular environment in situ, in the species Emiliania huxleyi. It is shown that crystal growth alternates between a space filling and a skeletonized growth mode, where the crystals elongate via their stable crystallographic facets, but the final morphology is a manifestation of growth arrest. This process is reminiscent of the balance between reaction-limited and transport-limited growth regimes underlying snowflake formation. It is suggested that localized ion transport regulates the kinetic instabilities that are required for transport-limited growth, leading to reproducible morphologies.
更多
查看译文
关键词
biomineralization,calcium carbonate,cryo electron tomography,crystal growth,reaction-diffusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要