One Size Fits All: Insights into Extrinsic Thermal Absorption Based on the Similarity of Supernova Remnant Radio-Continuum Spectra
ASTRONOMY & ASTROPHYSICS(2024)
Univ Nacl Cordoba | Instituto de Astronomía y Física del Espacio (IAFE) | Remote Sensing Div | CALTECH
Abstract
Typically, integrated radio frequency continuum spectra of supernova remnants (SNRs) exhibit a power-law form due to their synchrotron emission. In numerous cases, these spectra show an exponential turnover, which has long been assumed to be due to thermal free-free absorption in the interstellar medium. We used a compilation of Galactic radio continuum SNR spectra, with and without turnovers, to constrain the distribution of the absorbing ionised gas. We introduce a novel parameterisation of SNR spectra in terms of a characteristic frequency, ν* which depends both on the absorption turnover frequency and the power-law slope. Normalising to v* and to the corresponding flux density, S* we demonstrate that the stacked spectra of our sample reveal a similarity in behavior with low scatter (root mean square, rms, of ~15%), and a unique exponential drop-off that is fully consistent with the predictions of a free-free absorption process. Observed SNRs, whether exhibiting spectral turnovers or not, appear to be spatially well-mixed in the Galaxy without any evident segregation between them. Moreover, their Galactic distribution does not show a correlation with general properties such as heliocentric distance or Galactic longitude, as might have been expected if the absorption were due to a continuous distribution of ionised gas. However, it naturally arises if the absorbers are discretely distributed, as suggested by early low-frequency observations. Modelling based on H II regions tracking Galactic spiral arms successfully reproduces the patchy absorption observed to date. While more extensive statistical datasets should yield more precise spatial models of the absorbing gas distribution, our present conclusion regarding its inhomogeneity will remain robust.
MoreTranslated text
Key words
H II regions,ISM: supernova remnants,radio continuum: general,radio continuum: ISM
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
1989
被引用77 | 浏览
1985
被引用63 | 浏览
2005
被引用17 | 浏览
2014
被引用46 | 浏览
1972
被引用53 | 浏览
1979
被引用31 | 浏览
2021
被引用11 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话