谷歌浏览器插件
订阅小程序
在清言上使用

An Overview and Comparison of Spectral Bundle Methods for Primal and Dual Semidefinite Programs

Feng-Yi Liao, Lei Ding, Yu Zheng

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
The spectral bundle method developed by Helmberg and Rendl is well-established for solving large-scale semidefinite programs (SDPs) in the dual form, especially when the SDPs admit $\textit{low-rank primal solutions}$. Under mild regularity conditions, a recent result by Ding and Grimmer has established fast linear convergence rates when the bundle method captures $\textit{the rank of primal solutions}$. In this paper, we present an overview and comparison of spectral bundle methods for solving both $\textit{primal}$ and $\textit{dual}$ SDPs. In particular, we introduce a new family of spectral bundle methods for solving SDPs in the $\textit{primal}$ form. The algorithm developments are parallel to those by Helmberg and Rendl, mirroring the elegant duality between primal and dual SDPs. The new family of spectral bundle methods also achieves linear convergence rates for primal feasibility, dual feasibility, and duality gap when the algorithm captures $\textit{the rank of the dual solutions}$. Therefore, the original spectral bundle method by Helmberg and Rendl is well-suited for SDPs with $\textit{low-rank primal solutions}$, while on the other hand, our new spectral bundle method works well for SDPs with $\textit{low-rank dual solutions}$. These theoretical findings are supported by a range of large-scale numerical experiments. Finally, we demonstrate that our new spectral bundle method achieves state-of-the-art efficiency and scalability for solving polynomial optimization compared to a set of baseline solvers $\textsf{SDPT3}$, $\textsf{MOSEK}$, $\textsf{CDCS}$, and $\textsf{SDPNAL+}$.
更多
查看译文
关键词
spectral bundle methods,primal,dual
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要