谷歌浏览器插件
订阅小程序
在清言上使用

Abstract 2753: Engineering Patient-Derived Tumors to Enable High-Throughput Screening: Immuno-oncology Workflows

Andrew Tsao, Xiaoyu Yang,Garrett Wong, Vivek Chandra, Jacob Delgadillo, Lindsay Bailey Steinitz,Brittany Balhouse,Colin Paul, Jakhan Nguyen,Sybelle Djikeng,Shyanne Salen,Jason Sharp,Matt Dallas,David Kuninger

Cancer research(2023)

引用 0|浏览1
暂无评分
摘要
Aim/Introduction: In recent years, cancer immunotherapy has become one of the fastest-growing areas in cancer research. Selecting suitable and cost-effective experimental models for developing and validating immunotherapies is one of the major obstacles researchers face today. To overcome this, patient-derived tumor models are of increasing interest because they can better recapitulate many of the properties and the heterogeneity exhibited by the tumor microenvironment at a relatively low cost. Hereby, we propose a high throughput screening platform for an effective and efficient evaluation of cancer immunotherapies in patient-derived tumor models. Methods: Tumor models were established in vitro from patient-derived tumor biopsies. Established tumoroids were engineered using a luciferase-green fluorescent protein (GFP) lentivirus to generate a reporter pool. Transduced pools were enriched for GFP via flow cytometry and characterized using RNA/scRNA-seq and biomarker-based sequencing. Natural Killer (NK) cells were co-cultured with the enriched pool in various effector-to-target ratios and recorded using a live cell imaging and analysis platform. Cytotoxicity and cell health were measured by GFP intensity, luciferase activity, and caspase-based live staining. Results: A patient-derived tumoroid reporter pool was successfully generated through GFP enrichment using a flow cytometer. The killing efficiency of immune cells with various effector(E) to target(T) ratios has been successfully captured in a ratio-dependent manner via the live cell imaging and analysis platform. NK cell-mediated cytotoxicity was successfully measured through GFP intensity, luciferase, and caspase activity. Conclusions: Traditional cell line generation can be used in patient-derived tumoroid models to generate enriched reporter cell pools without selection pressure. Outside of establishing screening platforms, scientists can use this approach to efficiently engineer patient-derived tumoroid models to meet their specific research goals. Here, we used the reporter pool to develop a multiplex-killing assay to measure cell viability and toxicity. This platform can be used in a variety of immune cell workflows, providing a method that can predict tissue-specific responses, and evaluate solid tumor immunotherapies in high throughput cell-based assays. Citation Format: Andrew Tsao, Xiaoyu Yang, Garrett Wong, Vivek Chandra, Jacob Delgadillo, Lindsay Bailey Steinitz, Brittany Balhouse, Colin Paul, Jakhan Nguyen, Sybelle Djikeng, Shyanne Salen, Jason Sharp, Matt Dallas, David Kuninger. Engineering patient-derived tumors to enable high-throughput screening: Immuno-oncology workflows [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 2753.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要