Saturation Genome Editing of DDX3X Clarifies Pathogenicity of Germline and Somatic Variation

Nature Communications(2023)

引用 10|浏览1
暂无评分
摘要
Loss-of-function of DDX3X is a leading cause of neurodevelopmental disorders (NDD) in females. DDX3X is also a somatically mutated cancer driver gene proposed to have tumour promoting and suppressing effects. We perform saturation genome editing of DDX3X, testing in vitro the functional impact of 12,776 nucleotide variants. We identify 3432 functionally abnormal variants, in three distinct classes. We train a machine learning classifier to identify functionally abnormal variants of NDD-relevance. This classifier has at least 97% sensitivity and 99% specificity to detect variants pathogenic for NDD, substantially out-performing in silico predictors, and resolving up to 93% of variants of uncertain significance. Moreover, functionally-abnormal variants can account for almost all of the excess nonsynonymous DDX3X somatic mutations seen in DDX3X-driven cancers. Systematic maps of variant effects generated in experimentally tractable cell types have the potential to transform clinical interpretation of both germline and somatic disease-associated variation. Pathogenic variants of DDX3X are associated with neurodevelopmental disorders (NDD) and cancer. Here, the authors perform saturation genome editing of DDX3X to test the functional impact of 12,776 variants, develop a machine learning classifier to identify variants relevant for NDD, and show that DDX3X predominantly acts as a tumour suppressor in cancer.
更多
查看译文
关键词
Multiplex Genome Editing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要