谷歌浏览器插件
订阅小程序
在清言上使用

Dynamics of the Molecular Geometric Phase

Physical review letters(2024)

引用 0|浏览10
暂无评分
摘要
The fate of the molecular geometric phase in an exact dynamical framework is investigated with the help of the exact factorization of the wave function and a recently proposed quantum hydrodynamical description of its dynamics. An instantaneous, gauge-invariant phase is introduced for arbitrary paths in nuclear configuration space in terms of hydrodynamical variables, and shown to reduce to the adiabatic geometric phase when the state is adiabatic and the path is closed. The evolution of the closed-path phase over time is shown to adhere to a Maxwell-Faraday induction law, with nonconservative forces arising from the electron dynamics that play the role of electromotive forces. We identify the pivotal forces that are able to change the value of the phase, thereby challenging any topological argument. Nonetheless, negligible changes in the phase occur when the local dynamics along the probe loop is approximately adiabatic. That is, the geometric phase effects that arise in an adiabatic limiting situation remain suitable to effectively describe certain dynamic observables.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要