Engineering dual-crystal configurations in perovskite oxides boosts electrocatalysis of lithium-oxygen batteries

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览13
暂无评分
摘要
Sculpting crystal configurations can vastly affect the charge and orbital states of electrocatalysts, fundamentally determining the catalytic activity of lithium-oxygen (Li-O2) batteries. However, the crucial role of crystal configurations in determining the electronic states has usually been neglected and needs to be further examined. Herein, we introduce orthorhombic and trigonal system into 0.5La0.6Sr0.4MnO3-0.5LaMn0.6Co0.4O3 (LSMCO) by selectively incorporating Sr and Co cations into the LaMnO3 framework during the sol-gel process, which is used to explore the relationship among crystal structure, electronic states and catalytic performance. Based on both experimental and theoretical calculations, the dual-crystal configurations induce strong lattice distortion, which promotes MnO6 octahedra vibration and shortened Mn-O bonds. Furthermore, the suppressed Jahn-Teller distortion weakens the orbital arrangement and accelerates the charge delocalization, leading to the conversion of Mn3+ to Mn4+ and optimized electronic states. Ultimately, this resulted in optimized Mn 3d and O 2p orbital hybridization and activated lattice oxygen function, leading to a significant improvement in electrocatalytic activity. The LSMCO catalyzed Li-O2 battery achieves enhanced discharge capacity of 14498.7 mAh/g and cycling stability of 258 cycles. This work highlights the significance of inner structure and presents a feasible strategy for engineering crystal configurations to boost electrocatalysis of Li-O2 batteries.
更多
查看译文
关键词
Li-O2 batteries,Cathode catalysts,Perovskite metal oxides,Structure engineering,Structure-property relationship
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要