CO2 gas stripped off membranous residual oil from pore surfaces: Effects of temperature, pressure and wettability

Journal of Rock Mechanics and Geotechnical Engineering(2023)

Cited 0|Views12
No score
Abstract
The threshold values of CO2 gas stripped off membranous residual oil from the pore walls are not clear under different temperatures, pressures and wettability conditions. The extent to which temperature, pressure and wettability influence CO2 flooding for enhancing the recovery of residual oil in membranous formations also remains uncertain. Therefore, further quantitative characterization is entailed. In this study, the molecular dynamics method was employed to explore CO2 flooding under different temperatures, pressures and wettability conditions, aiming to enhance the production of membranous residual oil. The results reveal that the interaction energy between CO2, decane molecules and pore walls exhibits a decrease with increasing temperature and an increase with increasing pressure, respectively, in distinct wettability scenarios. When the temperature was at or below 363 K and the pressure was not lower than 40 MPa, CO2 gas could detach the membranous residual oil from the pore walls in the water-wet systems. When the temperature was equal to 363 K and the pressure remained under 40 MPa, or the temperature surpassed 363 K, CO2 gas failed to detach the membranous residual oil from the pore walls in the water-wet systems. For the mixed-wet and oil-wet systems, CO2 molecules could not detach the membranous residual oil from the pore walls. The hierarchy of influence regarding temperature, pressure and wettability on the competitive adsorption capacity of CO2 and decane molecules on the pore walls emerged as follows: wettability > temperature > pressure. The findings of this study offer valuable insights into the application of CO2 gas flooding for the exploitation of membranous residual oil on pore walls.
More
Translated text
Key words
membranous residual oil,pore surfaces,gas
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined