谷歌浏览器插件
订阅小程序
在清言上使用

Existence and non-existence results to a mixed Schrodinger system in a plane

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
This article focuses on the existence and non-existence of solutions for the following system of local and nonlocal type \begin{equation*} \left\{ \begin{aligned} -\partial_{xx}u + (-\Delta)_{y}^{s_{1}} u + u - u^{2_{s_{1}}^{}-1} = \kappa \alpha h(x,y) u^{\alpha-1}v^{\beta} & \quad \mbox{in} ~ \mathbb{R}^{2}, -\partial_{xx}v + (-\Delta)_{y}^{s_{2}} v + v- v^{2_{s_{2}}^{}-1} = \kappa \beta h(x,y) u^{\alpha}v^{\beta-1} & \quad \mbox{in} ~ \mathbb{R}^{2}, u,v ~ \geq ~0 \quad \mbox{in} ~ \mathbb{R}^{2}, \end{aligned} \right. \end{equation*} where $s_{1},s_{2} \in (0,1),~\alpha,\beta>1,~\alpha+\beta \leq \min \{ 2_{s_{1}}^{},2_{s_{2}}^{}\}$, and $2_{s_i}^{} = \frac{2(1+s_i)}{1-s_i}, i=1,2$. The existence of a ground state solution entirely depends on the behaviour of the parameter $\kappa>0$ and on the function $h$. In this article, we prove that a ground state solution exists in the subcritical case if $\kappa$ is large enough and $h$ satisfies (1.3). Further, if $\kappa$ becomes very small in this case then there does not exist any solution to our system. The study in the critical case, i.e. $s_1=s_2=s, \alpha+\beta=2_s$, is more complex and the solution exists only for large $\kappa$ and radial $h$ satisfying (H1). Finally, we establish a Pohozaev identity which enables us to prove the non-existence results under some smooth assumptions on $h$.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要