谷歌浏览器插件
订阅小程序
在清言上使用

WRKY Transcriptional Factor IlWRKY70 from Iris laevigata Enhances Drought and Salinity Tolerances in Nicotiana tabacum

Gongfa Shi,Guiling Liu,Huijun Liu, Nuo Xu, Qianqian Yang, Ziyi Song,Wangbin Ye,Ling Wang

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2023)

引用 0|浏览13
暂无评分
摘要
Drought and high salinity greatly affect plant growth and development. WRKY transcription factors play a key role in plant tolerance to abiotic stress, but the functions of WRKYs in the ornamental monocotyledon Iris laevigata remain largely unexplored. In this study, we cloned IlWRKY70 and found that it is a Group III WRKY localized in the nucleus. The expression of IlWRKY70 was induced by NaCl and PEG-6000, which reached peaks (4.38 and 5.65 times) after 3 h and 1 h, respectively. The exogenous overexpression of IlWRKY70 in N. tabacum significantly improved the resistance under NaCl and drought treatments, as evidenced by higher germination rates, longer root lengths, and increased fresh weights compared to those of control plants. In addition, transgenic seedlings showed significantly reduced wilting, higher photosynthetic performance, higher Fv/Fm and chlorophyll content, and lower stomatal conductance. Moreover, transgenic lines showed higher antioxidant enzymatic activities, lower reactive oxygen species (ROS), and lower malondialdehyde contents. Accordingly, we also found higher expressions of antioxidant defense genes, including SOD, CAT, and POD, in transgenic lines compared to controls under salt and drought stresses. Thus, IlWRKY70 enhances the abilities of salt and drought tolerances in plants, at least partially, via ROS regulation and can be used for breeding I. laevigata possessing enhanced salt and drought resistances.
更多
查看译文
关键词
Iris laevigata,WRKY transcription factor,salt stress,drought stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要