谷歌浏览器插件
订阅小程序
在清言上使用

Seaweed-based alginate/hydroxyapatite composite for the effective removal of bacteria, cyanobacteria, algae, and crystal violet from water

Journal of biological engineering(2023)

引用 0|浏览16
暂无评分
摘要
A novel cost-effective and multifunctional nanocomposite was developed based on sustainable macroalgae biomass. The brown seaweed Sargassum latifolium was utilized for alginate extraction and the calcareous red seaweed Tricleocarpa fragilis was utilized as CaCO 3 source for nanohydroxyapatite synthesis. The developed Zn 2+ -crosslinked alginate/nanohydroxyapatite (ZA/nHA) beads were characterized by FT-IR, XRD, and TEM. The antimicrobial potential of ZA/nHA to disinfect synthetic Escherichia coli -contaminated water was evaluated at different bacterial load and composite concentrations. The developed ZA/nHA effectively inactivated bacteria at initial concentration ≤ 10 5 CFU mL −1 and 0.5–1% (w/v) of ZA/nHA within 300–360 min. The kinetics of bacterial disinfection exhibited better fitting to Weibull model than Log-liner model, which confirmed the disinfection process. Furthermore, treatment of the cyanobacterium ( Chroococcus sp.) and the microalga ( Chlorella sp.) with ZA/nHA showed promising antialgal properties as indicated by reductions in chlorophyll a. The treatment indicated 100% and 90% removal of Chroococcus sp. and Chlorella sp. within 2 and 4 days, respectively. The developed ZA/nHA also exhibited a promising application as a biosorbent for crystal violet (CV). The adsorption process was very fast (0.171 mg CV g −1 adsorbent was removed within 7 min at pH 6.0). The adsorption kinetics exhibited better fitting to the pseudo-second order and Elovich models than the pseudo-first order equation. Besides, Sips model better represented the isotherm data of CV adsorption. The thermodynamic analysis indicated exothermic adsorption, which became more favorable at low temperature and high CV concentration. The developed nanocomposite is eco-friendly and suitable for multiple environmental applications. Graphical Abstract
更多
查看译文
关键词
E. coli,Disinfection,Antialgal,Biosorption,Nanocomposite,nanohydroxyapatite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要