Chrome Extension
WeChat Mini Program
Use on ChatGLM

Preparation and Properties of Multiple Dynamically Crosslinked Self-Healing Poly(siloxane-Urethane) Flexible Sensor

Xiaoyu Zhang, Keyu Feng, Peng Yin, Yuqi Pan,Yujie Liu,Fanglei Zeng,Ning Li,Gang Yi,Zhongwei Wang

Reactive and functional polymers/Reactive & functional polymers(2023)

Cited 0|Views8
No score
Abstract
The flexible sensor with self-healing performance can heal itself when the sensor is damaged by the outside world, so it can significantly improve the service life of the sensor and reduce the repair cost, which has attracted widespread attention. However, currently, most flexible sensors with self-healing performance have problems such as single repair conditions and difficulty in balancing mechanical performance and repair efficiency. In this study, polypyrrole modified carbon nanotubes (PPY/CNTs) were first made, and then, inspired by the Chinese traditional myth "Nuwa Fuxi", a multiple dynamic crosslinking self-healing composite poly(siloxane-urethane) conductive elastomer (CPUSi) was successfully developed. The prepared CPUSi has excellent mechanical properties (11.27 MPa) and total shear repair efficiency (84%) under the excitation of multiple dynamic reversible interactions. At the same time, the surface scratch of CPUSi can be self-healing under multiple conditions such as heating at 60 degrees C, infrared light and ultraviolet light. The scratch repair efficiency is up to 99.9% under infrared light for 2 h. in addition, CPUSi has cyclic response to temperature and strain, so the material has broad application prospects in sports monitoring, electronic skin, intelligent wear, brain-computer interface and other fields
More
Translated text
Key words
Dynamic crosslinking,Self-healing,Carbon nanotubes,Flexible sensor,Poly (siloxane-urethane)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined