Chrome Extension
WeChat Mini Program
Use on ChatGLM

Weakly Supervised Cerebellar Cortical Surface Parcellation with Self-Visual Representation Learning.

Lecture Notes in Computer Science Medical Image Computing and Computer Assisted Intervention – MICCAI 2023(2023)

Univ North Carolina Chapel Hill | Univ Texas Arlington | Univ Georgia

Cited 0|Views9
Abstract
The cerebellum (i.e., little brain) plays an important role in motion and balances control abilities, despite its much smaller size and deeper sulci compared to the cerebrum. Previous cerebellum studies mainly relied on and focused on conventional volumetric analysis, which ignores the extremely deep and highly convoluted nature of the cerebellar cortex. To better reveal localized functional and structural changes, we propose cortical surface-based analysis of the cerebellar cortex. Specifically, we first reconstruct the cerebellar cortical surfaces to represent and characterize the highly folded cerebellar cortex in a geometrically accurate and topologically correct manner. Then, we propose a novel method to automatically parcellate the cerebellar cortical surface into anatomically meaningful regions by a weakly supervised graph convolutional neural network. Instead of relying on registration or requiring mapping the cerebellar surface to a sphere, which are either inaccurate or have large geometric distortions due to the deep cerebellar sulci, our learning-based model directly deals with the original cerebellar cortical surface by decomposing this challenging task into two steps. First, we learn the effective representation of the cerebellar cortical surface patches with a contrastive self-learning framework. Then, we map the learned representations to parcellation labels. We have validated our method using data from the Baby Connectome Project and the experimental results demonstrate its superior effectiveness and accuracy, compared to existing methods.
More
Translated text
Key words
Cerebellar Cortex Parcellation,Representation Learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
2012

被引用8617 | 浏览

2019

被引用1378 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest