Chrome Extension
WeChat Mini Program
Use on ChatGLM

Simultaneous Hip Implant Segmentation and Gruen Landmarks Detection.

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS(2024)

Cited 0|Views39
Abstract
The assessment of implant status and complications of Total Hip Replacement (THR) relies mainly on the clinical evaluation of the X-ray images to analyse the implant and the surrounding rigid structures. Current clinical practise depends on the manual identification of important landmarks to define the implant boundary and to analyse many features in arthroplasty X-ray images, which is time-consuming and could be prone to human error. Semantic segmentation based on the Convolutional Neural Network (CNN) has demonstrated successful results in many medical segmentation tasks. However, these networks cannot define explicit properties that lead to inaccurate segmentation, especially with the limited size of image datasets. Our work integrates clinical knowledge with CNN to segment the implant and detect important features simultaneously. This is instrumental in the diagnosis of complications of arthroplasty, particularly for loose implant and implant-closed bone fractures, where the location of the fracture in relation to the implant must be accurately determined. In this work, we define the points of interest using Gruen zones that represent the interface of the implant with the surrounding bone to build a Statistical Shape Model (SSM). We propose a multitask CNN that combines regression of pose and shape parameters constructed from the SSM and semantic segmentation of the implant. This integrated approach has improved the estimation of implant shape, from 74% to 80% dice score, making segmentation realistic and allowing automatic detection of Gruen zones. To train and evaluate our method, we generated a dataset of annotated hip arthroplasty X-ray images that will be made available.
More
Translated text
Key words
Image segmentation,Arthroplasty,Landmarks detection,Medical image analysis,Statistical Shape Model
求助PDF
上传PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined