谷歌浏览器插件
订阅小程序
在清言上使用

Micrococcin cysteine-to-thiazole conversion through transient interactions between a scaffolding protein and two modification enzymes.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览6
暂无评分
摘要
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, we demonstrate complex formation between TclI, TclJ and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要