临床药师主导的头孢菌素皮试规范化管理项目的效果评价——规范头孢菌素原液皮试的干预研究(三)
Chinese Journal of Hospital Pharmacy(2023)
Abstract
目的:评价在《β内酰胺类抗菌药物皮肤试验指导原则(2021年版)》发布后,北京大学第三医院临床药师为主导的抗菌药物管理(antimicrobical stewardship,AMS)团队实施了一系列取消头孢菌素皮试措施的干预效果.方法:回顾性分析2020年5月至2022年5月该院头孢菌素皮试临床应用的相关数据以及药品不良反应发生情况.临床药师首先进行基线调研,发现主要影响因素,着重进行管理,然后分别从头孢菌素皮试例次、皮试率和消耗量进行分析,同时采用中断时间序列分析(ITS)方法,临床药师在干预前(2020年5月至2021年5月)和干预后(2021年6月至2022年5月)对头孢菌素使用强度进行分析.结果:规范头孢菌素皮试后,结局指标皮试例次、皮试率、消耗量均显著下降,在85%~89%之间(P<0.05).干预前,头孢菌素使用强度每月下降22.83%(P=0.002),在干预的第1个月(2021年6月),头孢菌素使用强度上升了 82.52%(P=0.267),而相较于干预前的趋势,干预后的变化趋势在-22.83%的基础上再上升54.42%(P<0.001).同时2021年与2020年同期相比,总的抗菌药物使用强度下降.不良反应发生率差异无统计学意义.结论:通过规范化管理,头孢菌素的皮试例次、皮试率和消耗量均显著下降,在总的抗菌药物使用强度下降的同时头孢菌素使用强度较之前大幅上升,在一定程度上优化了抗菌药物临床使用结构,不良反应发生率并未增加,以临床药师主导的头孢菌素皮试规范化管理项目取得了较好的成效.
MoreKey words
cephalosporin skin test,clinical pharmacist,interrupt time series analysis,antimicrobial stewardship
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper