Chrome Extension
WeChat Mini Program
Use on ChatGLM

Observation of the Antimatter Hypernucleus ^4_Λ̅H

STAR Collaboration,M. I. Abdulhamid,B. E. Aboona,J. Adam,L. Adamczyk,J. R. Adams,I. Aggarwal,M. M. Aggarwal,Z. Ahammed,E. C. Aschenauer,S. Aslam,J. Atchison,V. Bairathi,J. G. Ball Cap,K. Barish,R. Bellwied,P. Bhagat,A. Bhasin,S. Bhatta,S. R. Bhosale,J. Bielcik, J. Bielcikova,J. D. Brandenburg,C. Broodo,X. Z. Cai,H. Caines,M. Calderón de la Barca Sánchez,D. Cebra,J. Ceska,I. Chakaberia,P. Chaloupka, B. K. Chan,Z. Chang,A. Chatterjee,D. Chen, J. Chen,J. H. Chen,Z. Chen,J. Cheng,Y. Cheng,S. Choudhury,W. Christie,X. Chu,H. J. Crawford,M. Csanád,G. Dale-Gau,A. Das, I. M. Deppner,A. Dhamija,P. Dixit,X. Dong,J. L. Drachenberg, E. Duckworth,J. C. Dunlop,J. Engelage, G. Eppley,S. Esumi,O. Evdokimov,O. Eyser, R. Fatemi,S. Fazio,C. J. Feng,Y. Feng,E. Finch,Y. Fisyak,F. A. Flor,C. Fu,C. A. Gagliardi,T. Galatyuk,T. Gao,F. Geurts,N. Ghimire,A. Gibson,K. Gopal,X. Gou, D. Grosnick,A. Gupta,W. Guryn,A. Hamed,Y. Han,S. Harabasz, M. D. Harasty,J. W. Harris,H. Harrison-Smith,W. He,X. H. He,Y. He,N. Herrmann,L. Holub,C. Hu, Q. Hu,Y. Hu, H. Huang,H. Z. Huang, S. L. Huang,T. Huang,X. Huang, Y. Huang,Y. Huang,T. J. Humanic,M. Isshiki,W. W. Jacobs,A. Jalotra,C. Jena,A. Jentsch,Y. Ji,J. Jia,C. Jin,X. Ju,E. G. Judd,S. Kabana,D. Kalinkin,K. Kang,D. Kapukchyan,K. Kauder,D. Keane,A. Khanal,Y. V. Khyzhniak,D. P. Kikoła,D. Kincses,I. Kisel, A. Kiselev,A. G. Knospe, H. S. Ko, L. K. Kosarzewski,L. Kumar,M. C. Labonte,R. Lacey,J. M. Landgraf, J. Lauret,A. Lebedev,J. H. Lee,Y. H. Leung,N. Lewis,C. Li,D. Li, H-S. Li, H. Li,W. Li,X. Li, Y. Li,Y. Li, Z. Li,X. Liang,Y. Liang,R. Licenik,T. Lin,Y. Lin,M. A. Lisa,C. Liu,G. Liu,H. Liu,L. Liu,T. Liu,X. Liu, Y. Liu,Z. Liu,T. Ljubicic,O. Lomicky,R. S. Longacre,E. M. Loyd,T. Lu,J. Luo,X. F. Luo,L. Ma,R. Ma,Y. G. Ma,N. Magdy,D. Mallick,R. Manikandhan,S. Margetis,C. Markert,G. McNamara,O. Mezhanska,K. Mi,S. Mioduszewski,B. Mohanty,M. M. Mondal, I. Mooney,J. Mrazkova,M. I. Nagy,A. S. Nain,J. D. Nam,M. Nasim,D. Neff,J. M. Nelson,D. B. Nemes,M. Nie,G. Nigmatkulov,T. Niida,T. Nonaka,G. Odyniec,A. Ogawa,S. Oh,K. Okubo,B. S. Page,R. Pak,S. Pal, A. Pandav,A. K. Pandey,T. Pani,A. Paul,B. Pawlik, D. Pawlowska,C. Perkins,J. Pluta,B. R. Pokhrel,M. Posik,T. Protzman,V. Prozorova, N. K. Pruthi,M. Przybycien,J. Putschke,Z. Qin,H. Qiu,C. Racz,S. K. Radhakrishnan,A. Rana, R. L. Ray,R. Reed,C. W. Robertson, M. Robotkova,M. A. Rosales Aguilar,D. Roy,P. Roy Chowdhury,L. Ruan,A. K. Sahoo,N. R. Sahoo, H. Sako,S. Salur,S. Sato,B. C. Schaefer,W. B. Schmidke,N. Schmitz,F-J. Seck,J. Seger, R. Seto,P. Seyboth,N. Shah,P. V. Shanmuganathan,T. Shao,M. Sharma,N. Sharma, R. Sharma,S. R. Sharma,A. I. Sheikh, D. Shen,D. Y. Shen,K. Shen,S. S. Shi,Y. Shi,Q. Y. Shou,F. Si,J. Singh, S. Singha,P. Sinha,M. J. Skoby,N. Smirnov,Y. Söhngen,Y. Song,B. Srivastava,T. D. S. Stanislaus, M. Stefaniak,D. J. Stewart,Y. Su,M. Sumbera,C. Sun,X. Sun, Y. Sun, Y. Sun,B. Surrow,M. Svoboda,Z. W. Sweger,A. C. Tamis,A. H. Tang,Z. Tang,T. Tarnowsky,J. H. Thomas,A. R. Timmins,D. Tlusty,T. Todoroki,S. Trentalange,P. Tribedy,S. K. Tripathy,T. Truhlar,B. A. Trzeciak, O. D. Tsai,C. Y. Tsang,Z. Tu,J. Tyler,T. Ullrich,D. G. Underwood, I. Upsal,G. Van Buren,J. Vanek,I. Vassiliev,V. Verkest,F. Videbæk,S. A. Voloshin,F. Wang,G. Wang, J. S. Wang, J. Wang,K. Wang,X. Wang, Y. Wang,Y. Wang,Y. Wang,Z. Wang, J. C. Webb, P. C. Weidenkaff,G. D. Westfall,D. Wielanek, H. Wieman,G. Wilks, S. W. Wissink,R. Witt, J. Wu, J. Wu, X. Wu,X. Wu,B. Xi,Z. G. Xiao,G. Xie,W. Xie, H. Xu,N. Xu,Q. H. Xu, Y. Xu,Y. Xu, Z. Xu,Z. Xu,G. Yan,Z. Yan,C. Yang,Q. Yang,S. Yang,Y. Yang, Z. Ye,Z. Ye,L. Yi,K. Yip,Y. Yu,H. Zbroszczyk,W. Zha,C. Zhang,D. Zhang, J. Zhang,S. Zhang, W. Zhang,X. Zhang, Y. Zhang,Y. Zhang,Y. Zhang,Y. Zhang,Z. J. Zhang,Z. Zhang,Z. Zhang,F. Zhao,J. Zhao,M. Zhao, J. Zhou,S. Zhou,Y. Zhou,X. Zhu,M. Zurek,M. Zyzak

arxiv(2023)

Cited 0|Views9
No score
Abstract
At the origin of the Universe, asymmetry between the amount of created matter and antimatter led to the matter-dominated Universe as we know today. The origins of this asymmetry remain not completely understood yet. High-energy nuclear collisions create conditions similar to the Universe microseconds after the Big Bang, with comparable amounts of matter and antimatter. Much of the created antimatter escapes the rapidly expanding fireball without annihilating, making such collisions an effective experimental tool to create heavy antimatter nuclear objects and study their properties, hoping to shed some light on existing questions on the asymmetry between matter and antimatter. Here we report the first observation of the antimatter hypernucleus ^4_Λ̅H, composed of a Λ̅ , an antiproton and two antineutrons. The discovery was made through its two-body decay after production in ultrarelativistic heavy-ion collisions by the STAR experiment at the Relativistic Heavy Ion Collider. In total, 15.6 candidate ^4_Λ̅H antimatter hypernuclei are obtained with an estimated background count of 6.4. The lifetimes of the antihypernuclei ^3_Λ̅H and ^4_Λ̅H are measured and compared with the lifetimes of their corresponding hypernuclei, testing the symmetry between matter and antimatter. Various production yield ratios among (anti)hypernuclei and (anti)nuclei are also measured and compared with theoretical model predictions, shedding light on their production mechanisms.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined