Platinum-palladium-on-reduced Graphene Oxide As Bifunctional Electrocatalysts for Highly Active and Stable Hydrogen Evolution and Methanol Oxidation Reaction.

Nanoscale(2023)

引用 0|浏览13
暂无评分
摘要
In the context of the gradual depletion of global fossil fuel resources, it is increasingly necessary to explore new alternative energy. Hydrogen energy has attracted great interest from researchers because of its green and pollution-free characteristics. Moreover, the methanol oxidation reaction (MOR) can combine the hydrogen evolution reaction (HER), replacing the anode reaction (oxygen evolution reaction-OER) in overall water splitting and efficiently producing hydrogen. In this study, platinum-palladium nanoparticles on reduced graphene oxide (PtPd/rGO) were successfully synthesized as HER and MOR bifunctional electrocatalysts under alkaline conditions by the stepwise loading of Pt and Pd bimetallic nanoparticles on rGO using a simple liquid-phase reduction method. PtPd/rGO-2 with 0.99 wt% Pt and 2.86 wt% Pd in the HER has the lowest overpotential (87.16 mV at 100 mA cm-2), with the smallest Tafel slope (18.9 mV dec-1). The exceptional mass activity of PtPd/rGO-2 in the MOR reaches 10.75 A mg-1PtPd, which is 18.22 and 53.75 times greater than that of commercial Pt/C (Pt/C) and commercial Pd/C (Pd/C), respectively. PtPd/rGO-2 is 0.935 V lower in the coupling reaction of HER and MOR (MOR parallel to HER) compared to the overall water splitting (OER parallel to HER) without methanol (10 mA cm-2). This is probably because appropriate Pt and Pd loading exposes many more catalytic sites, and the synergistic interaction between Pt, Pd, and Pt-Pd enhances the catalytic performance. This strategy can be used for the synthesis of novel bifunctional electrocatalysts. PtPd/rGO-2 shows exceptional excellent catalytic performance and good long-time stability for the HER, MOR, and MOR parallel to HER, which is attributable to the appropriate metal contents and the synergistic effect of Pt, Pd, and Pt-Pd alloy nanoparticles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要