Chrome Extension
WeChat Mini Program
Use on ChatGLM

Infrared Cloud Monitoring with UCIRC2

Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023)(2023)

KICP 𝑎 Department of Astronomy & Astrophysics

Cited 0|Views22
Abstract
The second generation of the Extreme Universe Space Observatory on a Super Pressure Balloon (EUSO-SPB2) is a balloon instrument that searched for ultra high energy cosmic rays (UHECRs) with energies above 1 EeV and very high energy neutrinos with energies above 1 PeV. EUSO-SPB2 consists of two telescopes: a fluorescence telescope pointed downward for the detection of UHECRs and a Cherenkov telescope toward the limb for the detection of PeV-scale showers produced by neutrino-sourced tau decay (just below the limb) and by cosmic rays (just above the limb). Clouds inside the fields of view of these telescopes--particularly that of the fluorescence telescope--reduce EUSO-SPB2's geometric aperture. As such, cloud coverage and cloud-top altitude within the field of view of the fluorescence telescope must be monitored throughout data-taking. The University of Chicago Infrared Camera (UCIRC2) monitored these clouds using two infrared cameras centered at 10 and 12 $\mu$m. By capturing images at wavelengths spanning the cloud thermal emission peak, UCIRC2 measured cloud color-temperatures and thus cloud-top altitudes. In this contribution, we provide an overview of UCIRC2, including an update on its construction and performance. We also show first results from the flight.
More
Translated text
Key words
IceCube Neutrino Observatory,Neutrino Detection
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:论文介绍了利用UCIRC2红外相机监测EUSO-SPB2探测项目中视场内云层覆盖和云顶高度的方法,以提高探测宇宙射线和超高能中微子的准确性。

方法】:作者使用UCIRC2红外相机,通过在10和12微米波长捕获图像,测量云层的颜色温度来确定云顶高度。

实验】:UCIRC2在EUSO-SPB2任务中进行了实地测试,文章展示了相机构建与性能的更新以及首次飞行实验的结果。