谷歌浏览器插件
订阅小程序
在清言上使用

Red Light Enhances the Antibacterial Properties, Biofabrication, and Stability of Fagonia Indica Callus-Based Silver Nanoparticles

PHOTOCHEMISTRY AND PHOTOBIOLOGY(2024)

引用 0|浏览12
暂无评分
摘要
Plant-based nanoparticles can be tuned through the frequency of light for efficient synthesis, structural properties, and antibacterial applications. This research assessed the effect of material type (callus and whole-plant extract) and the interaction with a specific range of light wavelength on AgNP synthesis. All types of AgNPs were characterized by their size, shape, associated functional groups, and surface charge. Interestingly, the size of red light and callus-based AgNPs (RC-AgNPs) was smaller (6.32 nm) compared to 14.59 nm for Ultraviolet light and callus-based AgNPs (UV-C-AgNPs). Zeta potential analysis showed that RC-AgNPs had higher stability (-29.2 mV) compared to UV-C-AgNPs (-16.7 mV). Similarly, red light-based AgNPs had higher Oxidation reduction potential in both whole-plant-based and callus-based AgNPs, indicating a more oxidizing nature compared to those synthesized under UV light. This was confirmed by the lower total phenolic and flavonoid content associated with them and their lower antioxidant activity. The higher antibacterial activities and lower minimum inhibitory concentrations of red light-based AgNPs against highly resistant pathogenic bacteria demonstrated the role of red light in enhancing antibacterial activity. These results indicate that AgNPs synthesized in red light and callus extract are more active compared to those synthesized under other wavelengths and/or in whole-plant extracts.
更多
查看译文
关键词
AgNPs,callus,drug-resistant bacteria,electromagnetic radiation,F. indica,red light,whole-plant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要