Myxococcus xanthus PilB interacts with c-di-GMP and modulates motility and biofilm formation.

Keane J Dye,Safoura Salar, Uvina Allen, Wraylyn Smith,Zhaomin Yang

Journal of bacteriology(2023)

引用 0|浏览2
暂无评分
摘要
The regulation of biofilm and motile states as alternate bacterial lifestyles has been studied extensively in flagellated bacteria, where the second messenger cyclic-di-GMP (cdG) plays a crucial role. However, much less is known about the mechanisms of such regulation in motile bacteria without flagella. The bacterial type IV pilus (T4P) serves as a motility apparatus that enables to move on solid surfaces. PilB, the T4P assembly ATPase, is, therefore, required for T4P-dependent motility in . Interestingly, T4P is also involved in the regulation of exopolysaccharide as the biofilm matrix material in this bacterium. A newly discovered cdG-binding domain, MshE, is conserved in the N-terminus of PilB (PilB) in and other bacteria. This suggests that cdG may bind to PilB to control the respective outputs that regulate biofilm development and T4P-powered motility. In this study, we aimed to validate PilB as a cdG effector protein. We performed a systematic mutational analysis of its cdG-binding domain to investigate its relationship with motility, piliation, and biofilm formation. Excluding those resulting in low levels of PilB protein, all other substitution mutations in PilB resulted in mutants with distinct and differential phenotypes in piliation and biofilm levels in . This suggests that the PilB domain plays dual roles in modulating motility and biofilm levels, and these two functions of PilB can be dependent on and independent of each other in . IMPORTANCE The regulation of motility and biofilm by cyclic-di-GMP in flagellated bacteria has been extensively investigated. However, our knowledge regarding this regulation in motile bacteria without flagella remains limited. Here, we aimed to address this gap by investigating a non-flagellated bacterium with motility powered by bacterial type-IV pilus (T4P). Previous studies hinted at the possibility of PilB, the T4P assembly ATPase, serving as a cyclic-di-GMP effector involved in regulating both motility and biofilm. Our findings strongly support the hypothesis that PilB directly interacts with cyclic-di-GMP to act as a potential switch to promote biofilm formation or T4P-dependent motility. These results shed light on the bifurcation of PilB functions and its pivotal role in coordinating biofilm formation and T4P-mediated motility.
更多
查看译文
关键词
cyclic-di-GMP, PilB ATPase, type IV pilus (T4P), biofilm, motility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要