Two-Hop Cooperative Caching and UAVs Deployment Based on Potential Game
DRONES(2023)
Abstract
This paper explores the joint cache placement and 3D deployment of Unmanned Aerial Vehicle (UAV) groups, utilizing potential game theory and a two-hop UAV cooperative caching mechanism, which could create a tradeoff between latency and coverage. The proposed scheme consists of three parts: first, the initial 2D location of UAV groups is determined through K-means, with the optimal altitude based on the UAV coverage radius. Second, to balance the transmission delay and coverage, the MOS (Mean Opinion Score) and coverage are designed to evaluate the performance of UAV-assisted networks. Then, the potential game is modeled, which transfers the optimization problem into the maximization of the whole network utility. The locally coupling effect resulting from action changes among UAVs is considered in the design of the potential game utility function. Moreover, a log-linear learning scheme is applied to solve the problem. Finally, the simulation results verify the superiority of the proposed scheme in terms of the achievable transmission delay and coverage performance compared with two other tested schemes. The coverage ratio is close to 100% when the UAV number is 25, and the user number is 150; in addition, this game outperforms the benchmarks when it comes to maximizing MOS of users.
MoreTranslated text
Key words
3D UAV deployment,proactive cooperative cache,potential game,two-hop neighbors
求助PDF
上传PDF
PPT
Code
Data
View via Publisher
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined