Chrome Extension
WeChat Mini Program
Use on ChatGLM

Quantum Oscillations of the Quasiparticle Lifetime in a Metal

NATURE(2023)

Cited 1|Views3
No score
Abstract
Following nearly a century of research, it remains a puzzle that the low-lying excitations of metals are remarkably well explained by effective single-particle theories of non-interacting bands(1-4). The abundance of interactions in real materials raises the question of direct spectroscopic signatures of phenomena beyond effective single-particle, single-band behaviour. Here we report the identification of quantum oscillations (QOs) in the three-dimensional topological semimetal CoSi, which defy the standard description in two fundamental aspects. First, the oscillation frequency corresponds to the difference of semiclassical quasiparticle (QP) orbits of two bands, which are forbidden as half of the trajectory would oppose the Lorentz force. Second, the oscillations exist up to above 50 K, in strong contrast to all other oscillatory components, which vanish below a few kelvin. Our findings are in excellent agreement with generic model calculations of QOs of the QP lifetime (QPL). Because the only precondition for their existence is a nonlinear coupling of at least two electronic orbits, for example, owing to QP scattering on defects or collective excitations, such QOs of the QPL are generic for any metal featuring Landau quantization with several orbits. They are consistent with certain frequencies in topological semimetals(5-9), unconventional superconductors(10,11), rare-earth compounds(12-14) and Rashba systems(15), and permit to identify and gauge correlation phenomena, for example, in two-dimensional materials(16,17) and multiband metals(18).
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined