Contaminant biomonitoring augmented with a qPCR array indicates hepatic mRNA gene expression effects in wild-collected seabird embryos.

The Science of the total environment(2023)

引用 0|浏览8
暂无评分
摘要
Birds can bioaccumulate persistent contaminants, and maternal transfer to eggs may expose embryos to concentrations sufficient to cause adverse effects during sensitive early-life stages. However, using tissue residue concentrations alone to infer whether contaminant effects are occurring suffers from uncertainty, and efficient, sensitive biomarkers remain limited in wildlife. We studied relationships between whole embryo contaminant concentrations (total mercury, organochlorine pesticides, perfluoroalkyl substances, polychlorinated biphenyls, and halogenated flame retardants) together with mRNA expression in embryonic liver tissue from a Pacific Ocean seabird, the rhinoceros auklet (Cerorhinca monocerata). Fresh eggs were collected, incubated under controlled conditions, and from the pre-hatch embryo, hepatic RNA was extracted for qPCR array analysis to measure gene expression (2-∆Cq), while the remaining embryo was analyzed for contaminant residues. Contaminant and gene expression data were assessed with a combination of multivariate approaches and linear models. Results indicated correlations between embryonic total mercury and several genes such as sepp1, which encodes selenoprotein P. Correlation between the biotransformation gene cyp1a4 and the C7 perfluoroalkyl carboxylic acid PFHpA was also evident. This study demonstrates that egg collection from free-living populations for contaminant biomonitoring programs can relate chemical residues to in ovo mRNA gene expression effects in embryo hepatic tissue.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要