谷歌浏览器插件
订阅小程序
在清言上使用

Quality Assessment of Processed Graphene Chips for Biosensor Application.

pubmed(2023)

引用 0|浏览16
暂无评分
摘要
The quality of graphene intended for use in biosensors was assessed on manufactured chips using a set of methods including atomic force microscopy (AFM), Raman spectroscopy, and low-frequency noise investigation. It is shown that local areas of residues on the graphene surface, formed as a result of the interaction of graphene with a photoresist at the initial stage of chip development, led to a spread of chip resistance (R) in the range of 1–10 kOhm and to an increase in the root mean square (RMS) roughness up to 10 times, which can significantly worsen the reproducibility of the parameters of graphene chips for biosensor applications. It was observed that the control of the photoresist residues after photolithography (PLG) using AFM and subsequent additional cleaning reduced the spread of R values in chips to 1–1.6 kOhm and obtained an RMS roughness similar to the roughness in the graphene film before PLG. Monitoring of the spectral density of low-frequency voltage fluctuation (SU), which provides integral information about the system of defects and quality of the material, makes it possible to identify chips with low graphene quality and with inhomogeneously distributed areas of compressive stresses by the type of frequency dependence SU(f).
更多
查看译文
关键词
graphene chip,surface topography,photoresist residues,low-frequency noise
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要