Determining the effectiveness of using acoustic velocity as an indirect measurement of branchiness in standing longleaf pine

CANADIAN JOURNAL OF FOREST RESEARCH(2023)

引用 0|浏览0
暂无评分
摘要
Branches reduce stem quality, and the level of the effect is determined by the geometry, size, and number, of associated knots. Quantifying branchiness is difficult, as visual estimates are subjective, and mechanical measurements are impractical. Acoustic velocity (AV) is a relatively novel measurement capturing the speed stress travels through wood. AV is correlated with wood stiffness and is affected by internal characteristics like knots. This project tested AV as an indirect branchiness metric by measuring AV, height, diameter, and counting branches classified by diameter on 255 standing 8 year old longleaf pine (Pinus palustris). AV was highly correlated with height (r = 0.76, p < 0.0001) and slenderness (r = 0.52, p < 0.0001). AV was moderately correlated with large living branches (diameter > 2.54 cm) (r = -0.27, p < 0.0001), but not correlated with total branches. Height, slenderness, and the count of large living branches (diameter > 2.54 cm) were included in the selected model for AV. Inclusion of dead or small (diameter < 2.54 cm) branches reduced model power. The best model captured 11% of the variation in AV, of which branches explained 5%. We conclude that AV does not appropriately quantify individual tree branchiness, but may be suitable for comparing populations such as families or provenances.
更多
查看译文
关键词
acoustic velocity,branches,stem quality,time of flight,resonance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要