Finite Element Analysis of Hysteretic Behavior of Superposed Shear Walls Based on OpenSEES

BUILDINGS(2023)

引用 0|浏览1
暂无评分
摘要
The superimposed slab shear wall has been found to be more and more applicable in the building construction industry due to its building industrialization superiority. The hysteretic behavior of superimposed slab shear walls accounts for an important part of seismic performance analysis. This paper presents the results of a numerical study to investigate the hysteretic behavior of superimposed slab shear walls. Different calculation methods of the shear capacity of the combined interface and horizontal connection are introduced. The calculated results show that the shear capacity of the combined interface and horizontal connection is much larger than the ultimate shear capacity of a superimposed slab shear wall. Therefore, the bond slip effect of a combined interface and horizontal connection can be ignored in finite element analysis on the premise of it not affecting calculation precision. Three different theoretical analysis models, namely the vertical multi-line element model, bend-shear coupled fiber model and layered shell element model, were established in OpenSEES based on a macro-model and a micro-model. The results show that the calculated results of the vertical multi-line element model and the bend-shear coupled fiber model agree reasonably with the experiment results, whereas the calculated results of the layered shell model gave a relatively larger initial stiffness.
更多
查看译文
关键词
superposed shear walls,finite element analysis,hysteretic behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要